
Pritom Paul & Erin Lin
Project Final Report

Project Introduction and Description:

Problem: The racetrack contains a bunch of inner barriers that cars must drive around and
complete the track.

Proposed and Final Solutions:
Solution: We will implement a ranger to the car that is facing upward. Since the ranger is
facing upward, we will have a ruler as the “object” to block the wave giving us a distance
value. When the ranger detects a large value (greater than 40cm), it would signal the car to
drive straight. Otherwise, there are 2 if statements that will signal the car to turn 90o clockwise
or counterclockwise. For the car to turn counterclockwise, the ranger value needs to be less
than 10 (the rule in front is less than 10 cm away), otherwise if the ranger value is within 20 to
40 cm, then it will turn clockwise. Overall, we are guiding the car to turn when it needs to,
otherwise just go in a straight line.

High-Level Design:

Main:
●​ After every 100ms, it will start the main code for this project that is within an infinite

while loop. Once 100ms has passed, it will run the Wheel Speed Control that is
basically the same as lab 3 implementations.

●​ For the wheel speed control for the PWM, we already set a desired speed for the
whole system so the desired speed is a constant, while the differential speed is set
to 0, since we don’t need to turn at an angle.

●​ After applying the compare value, the system will record the ranger value and then it
will face the first if statement condition (is the ranger value <=10).

○​ If yes, then it will turn off the motor in order to let the counterclockwise
function to run. Then resume the system to turn on the motor and apply the
wheel speed control state.

○​ If no, then go to the seconds if condition
●​ Run the second if statement condition (is the ranger value >20 and <40).

○​ If yes, then it will turn off the motor in order to let the clockwise function to run.
Then resume the system to turn on the motor and apply the wheel speed
control state.

○​ If no, then go to the wheel speed control state

This is the counterclockwise function, used in the main.
Set the distance variable as well as reset the encoder to 0. Then calculate the arc length
from the wheel radius and circumference. From the H-bridge implementation, set the GPIO
ports to be counterclockwise and then turn on the enable pins.
Then it will run the while loop to make the car turn to 90 degrees based on the condition of
if the distance is less than the arc length.

●​ If yes, then calculate the new distance based on the circumference and encoders
●​ If no, then it's done turning 90 degrees counterclockwise

Lastly, set the motors off.

This is the clockwise function, used in the main.
Set the distance variable as well as reset the encoder to 0. Then calculate the arc length
from the wheel radius and circumference. From the H-bridge implementation, set the GPIO
ports to be clockwise and then turn on the enable pins.
Then it will run the while loop to make the car turn to 90 degrees based on the condition of
if the distance is less than the arc length.

●​ If yes, then calculate the new distance based on the circumference and encoders
●​ If no, then it's done turning 90 degrees clockwise

Lastly, set the motors off.

This is the Wheel Speed Control or the PWM function.
This is the same implementation used throughout lab 3-5 that uses capture mode and
PWM for the encoders. Not going to go too detailed on it as it calculates the desired and
actual wheel speed to find the current speed and calculate the sum of errors. Then find the
corrected speed into the PWM value and enforce the min and max limitations on it. Lastly,
set the compare value.

Low-Level Design:
Global variables/prototypes/etc.

main:
 Initializations

 Enforce a startup delay of 1 second
 Turn on the motors
 Set desired speed to a certain speed
 Set differential speed to 0

 Start 100 ms timer here!! <-- Important to start AFTER 1 second delay
 Infinite while loop:
 If 100 ms has passed:
​ <-- Start Wheel Speed Control -->
 For Each Wheel:
 calculate desired wheel speed as desired speed +/- differential speed
​ calculate actual wheel speed use trendline equation from figure for current speed
​ calculate current speed error from the difference of the desired & actual wheel speed
 add current speed error to an "error sum" variable
 calculate the corrected speed using the discrete equation given
 convert the corrected speed (duty cycle) into a compare value
 enforce minimum and maximum limits on the compare value
 apply the compare value
 <-- End Wheel Speed Control -->

 Read the ranger value (and request a new measurement)

​ If ranger value <= 10
​ ​ Turn motors off
​ ​ <------Start turning counterclockwise-------------->
​ ​ Set distance and encoder for both wheels to 0
​ ​ Calculate the arc length
​ ​ Set the H-bridge to turn the pins to counter-clockwise direction
​ ​ Turn the motor on
​ ​ While loop (distance <= arc length)
​ ​ ​ Calculate the new distance with the circumference & encoder from both wheels
​ ​ Turn motor off
​ ​ Set motor to forward
​ ​ <------End turning counterclockwise-------------->
​ ​ Set ranger value to a high number to indicate driving straight

If ranger value > 20 and <= 40

 Turn motors off
​ ​ <------Start turning clockwise-------------->

​ ​ Set distance and encoder for both wheels to 0
​ ​ Calculate the arc length
​ ​ Set the H-bridge to turn the pins to clockwise direction
​ ​ Turn the motor on
​ ​ While loop (distance <= arc length)
​ ​ ​ Calculate the new distance with the circumference & encoder from both wheels
​ ​ Turn motor off
​ ​ Set motor to forward
​ ​ <------End turning clockwise-------------->
​ Apply delay_cycle to wait for couple of second

 Other Functions:
 //might turn the counter, clockwise, and PWM into a function, but it's still the same code as above

 GPIO Init (usual stuff)

 Timer Init:
 PWM Timer+CCRs (30 kHz, OUTPUT_RESET_SET <- makes control easier)
 Encoder Timer+CCRs
 100 ms Timer

 I2C Init:
 readRanger:
 All same from Activity 13

 Encoder ISR:
 Same as in Lab 4

 100 ms Timer ISR:
 Mark that 100 ms has passed using a global flag

Verification of Operation:

Since the ranger didn’t detect
any object in the way, the
value would be high (more
than 40 cm away), indicating
the car will only drive straight
and does not perform any
turns.

The ranger detects an object
less than 10 cm away (9 cm)
which triggers the
counter-clockwise turning
function. After completing the
function, the ranger detects
something greater than 40 cm
(101 cm) resulting in the car to
resume driving straight.

When the ranger detects an
object between 20 to 40 cm
(21 cm), the clockwise turning
function is triggered. After
completing the function, the
ranger detects something
greater than 40 cm (107 cm)
resulting the car to resume
driving straight.

Conclusion:
The second solution (ranger) works as intended overall, but there was one slight unexpected
behavior that we have noticed. There was a slight issue with what we had with the ranger as
after it turned either counterclockwise or clockwise, it would then repeat itself one more time.
When I was trying to figure out why, I used a print statement on the ranger to see what was
happening. The problem was that after the reader read the ranger once and performed the
function, the reader’s response was too fast and it read another value similar to the previous
for the next run. So the solution that I proposed was to use a while loop that will read the
ranger 3 times, but will take the last value to ensure that it acts as a delay, making sure that it
runs the function once. So once the problem was fixed, the car began to work as intended.
Overall, what I think the code could be improved on is readings of the ranger so it can act
faster and more fluently for the race without any delays. The delay is there to add a 1 second
for the car before making a decision and lets the car actually turn 90 degrees. Another thing
that I think could be improved is the car moving straight because at a higher speed
(desired_speed = 50), the car does drive at a slight angle so I would like to improve that but
overall at a reasonable speed, the car does drive straight. The turning function worked as
intended since it's the same code used during Lab 3 and the pwm function and timers was
the same as lab 5.
We would like to point out that our first solution was using the bumper but we had an issue on
figuring out how to use the bumpers to turn 90 degrees clockwise or counterclockwise without
touching the bumpers. We didn’t know that we could place makers beforehand and because
of this we decided to use the ranger as a way for us to turn the car 90 degrees clockwise or
counterclockwise.

